Electronics & Electronics Engineering Syllabus

West Bengal University of Technology

COURSE STRUCTURE FOR B.TECH IN ELECTRICAL & ELECTRONICS ENGINEERING

3RD SEMESTER

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECTS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE301</td>
<td>Circuit Theory & Networks</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>EE302</td>
<td>Electrical & Electronic Measurement</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CS302</td>
<td>Data Structure & Algorithms</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MS301</td>
<td>Materials Science</td>
<td>3</td>
<td>0</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>M302</td>
<td>Mathematics</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CS312</td>
<td>Numerical Methods & Programming</td>
<td>3</td>
<td>0</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL OF THEORY

CONTACT PERIODS PER WEEK

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECTS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE391</td>
<td>Circuits & Network Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>EE392</td>
<td>Electrical & Electronic Measurement Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CS392</td>
<td>Data Structure Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CS382</td>
<td>Numerical Methods & Programming Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL OF PRACTICAL

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECTS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE301</td>
<td>Circuit Theory & Networks</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>EE302</td>
<td>Electrical & Electronic Measurement</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CS302</td>
<td>Data Structure & Algorithms</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MS301</td>
<td>Materials Science</td>
<td>3</td>
<td>0</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>M302</td>
<td>Mathematics</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CS312</td>
<td>Numerical Methods & Programming</td>
<td>3</td>
<td>0</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL of Semester :

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOURTH SEMESTER

A. THEORY:

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECTS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC 401</td>
<td>Analog Electronic Circuits</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EC 402</td>
<td>Digital Electronics & Integrated Circuits</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>EI 402</td>
<td>Electronic Measurements & Instrumentation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CS 404</td>
<td>Computer Organization & Architecture</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EI 401</td>
<td>Transducer & Sensors</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total of Theory

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. PRACTICAL:

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECTS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC 491</td>
<td>Analog Electronic Circuits Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>EC 492</td>
<td>Digital Electronics & Integrated Circuits Lab.</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>EI 492</td>
<td>Electronic Measurements & Instrumentation Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL of Seminar :

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Electronics & Electronics Engineering Syllabus

<table>
<thead>
<tr>
<th>SL NO</th>
<th>CODE</th>
<th>THEORY</th>
<th>CONTACT PERIODS PER WEEK</th>
<th>TOTAL</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>EEE 501</td>
<td>ELECTRICAL MACHINES-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>EE 504</td>
<td>POWER ELECTRONICS</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>EE 503</td>
<td>CONTROL SYSTEM</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>EEE 502</td>
<td>ELECTROMAGNETIC THEORY</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>EI 502</td>
<td>MICROPROCESSOR & MICRO CONTROLLER</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL THEORY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIFTH SEMESTER

A. THEORY:

<table>
<thead>
<tr>
<th>CODE</th>
<th>THEORY</th>
<th>CONTACT PERIODS PER WEEK</th>
<th>TOTAL</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>EEE 601</td>
<td>ELECTRICAL MACHINES – II</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>EEE 604</td>
<td>ELECTRIC DRIVES</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>EEE 603</td>
<td>POWER SYSTEM – I</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ME 602</td>
<td>HEAT POWER ENGG</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>EEE 605</td>
<td>ACTIVE & PASSIVE NETWORK SYNTHESIS</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EEE 606</td>
<td>ELECTIVE – I</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TOTAL THEORY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SIXTH SEMESTER

A. THEORY:

<table>
<thead>
<tr>
<th>CODE</th>
<th>THEORY</th>
<th>CONTACT PERIODS PER WEEK</th>
<th>TOTAL</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
</tbody>
</table>

Total Sessions: 30 26
B. PRACTICAL:

<table>
<thead>
<tr>
<th>Code</th>
<th>Theory</th>
<th>Contacts periods Per week</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>EEE 691</td>
<td>ELECTRICAL MACHINES – II LAB</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EEE 694</td>
<td>ELECTRIC DRIVES LAB</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EEE 693</td>
<td>POWER SYSTEM – I LAB</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 692</td>
<td>HEAT POWER ENGG LAB</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TOTAL PRACTICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL SESSIONS: 34 30

Structure & Academic Curricula for B. Tech in Electrical & Electronics Engineering

SEVENTH SEMESTER

A. THEORY

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Code</th>
<th>Theory</th>
<th>Contact Periods / Week</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>EEE-701</td>
<td>Power System - II</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>IT-711</td>
<td>Multimedia Systems</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EEE-702</td>
<td>Electrical Machine Design</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>EEE-703</td>
<td>Digital Signal Processing</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EEE-704</td>
<td>Elective-II</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TOTAL THEORY</td>
<td></td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

B. PRACTICAL

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Code</th>
<th>Theory</th>
<th>Contact Periods / Week</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>EEE-791</td>
<td>Power System – II Lab</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>EEE-792</td>
<td>Electrical Machine Design Lab</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>IT-781</td>
<td>Multimedia Lab</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TOTAL PRACTICAL</td>
<td></td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

C. SESSIONAL

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Code</th>
<th>Theory</th>
<th>Contact Periods / Week</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>EEE-781</td>
<td>Assigned Project</td>
<td>0 0 0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>EEE-782</td>
<td>Seminar on Assigned / Selected Topics</td>
<td>0 0 3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TOTAL SESSIONAL</td>
<td></td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL OF SEMESTER 27 27

Elective-II
- a. HVDC Transmission
- b. Power Generation Economics
- c. Utilization of Electric Power
- d. Illumination Technology
ELECTRONICS & ELECTRONICS ENGINEERING SYLLABUS

EIGHTH SEMESTER

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Code</th>
<th>Theory</th>
<th>Contact Periods / Week</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HU-801</td>
<td>Values and Ethics in Profession</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>HU-802</td>
<td>Industrial Management</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EEE-801</td>
<td>Financial Management & Accounts</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>EEE-802</td>
<td>Elective-III</td>
<td>3 0 0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL THEORY</td>
<td></td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Code</th>
<th>Theory</th>
<th>Contact Periods / Week</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>EE-881</td>
<td>Personality Development</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>EE-882</td>
<td>Comprehensive Viva-Voce</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>EE-893</td>
<td>Assigned Project</td>
<td>- - 12</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL SESSIONAL</td>
<td></td>
<td>15</td>
<td>14</td>
</tr>
</tbody>
</table>

| | | **TOTAL OF SEMESTER** | | 27 | 26 |

Elective-III
- a. Microprocessor Based Systems-EEE-802(a)
- b. Optimization Techniques-EE-802(b)
- c. Advanced Numerical Computation-EE-802(c)
- d. Energy Audit & Conservation-EE-802(d)
- e. Optimal Control Systems-EE-802(e)
- f. Communication Engineering-EC-802(f)
- g. Remote Control & Telemetry-EE-802(g)
- h. Computer Communication-EC-802(h)
- i. AI and Neural Networks-CS-802(i)
- j. Project Management & Operation Research-M-802(j)

CIRCUIT THEORY & NETWORKS

Code: EE 301
Contact: 3L + IT
Credit: 4

Different types of systems & networks: continuous & Discrete, Fixed and Time varying, Linear and Non-linear, Lumpd and distributed, Passive & Active Networks & Systems
Laplace transform of impulse and sinusoidal steps waveforms for RL, RC, LC and RLC Circuits. Transient analysis of different electrical circuits with and without initial conditions, Fourier Series and Fourier Transform
Network theorems and their applications in circuit analysis, Formulation of network equations, Source transformations, Loop variable analysis and node variable analysis
Graph of network, concept of tree branch, tree link. Incidence matrix, Tie-set matrix and loop currents, Cut set matrix and node pair potentials
Electronics & Electronics Engineering Syllabus

Two port networks, Open circuit Impedance and Short circuit Admittance parameters, Transmission parameters, hybrid parameters, and their inter-relations
Indefinite admittance matrix- their applications to the analysis of active network
Active filter analysis and synthesis using operational amplifier

SPICE: How SPICE works. Model statement, models for passive and active device, D.C. circuits analysis, small signal analysis, capacitors and inductors in D.C. Circuits, steady state and transient, plotting and printing, input and output Impedance, D.C. sensitivity analysis, harmonic decomposition (Fourier Series), Harmonic re-composition, voltage controlled components

Text books :

1. Sudhakar: Circuits & Networks: Analysis & Synthesis 2/e TMH
2. Engineering circuit analysis with PSPICE and probe-Roger, MH
3. Engg Circuit Analysis.; Hayt 6/e Tata Mgraw-Hill
5. A. Chakravarty: Networks, Filters & Transmission Lines
6. D. Chattopadhyay and P. C. Rakshit: Electrical Circuits
7. A. V. Oppenheim and A. S. Wilsky: Signals & Systems, PHI
9. Sivanandam: Electric Circuits Analysis
10. Gupta: Circuit Analysis with Computer Application, New Age International
14. Wadhwa: Network Analysis & Synthesis, New Age International
15. Roychowdhury: Linear Integrated Circuits, New Age International
17. V.K. Chandna, A Text Book of Network Theory & Circuit Analysis, Cyber Tech

References:

ELECTRICAL AND ELECTRONIC MEASUREMENT
Code: EE 302
Contacts: 3L + 1T
Credits: 4

General features – Construction and principle of operation of moving coil, moving iron, Dynamometer, Thermal and Rectifier type deflecting instruments. Deflecting, controlling and damping torques, extension of instrument ranges using shunts, multipliers and instrument transformers. Measurement of low, medium and high resistances, Kelvins double bridge, multimeters, megger, localization of cable faults.

D.C. and A.C. potentiometers, Measurement of high voltage, Electrostatic instruments, measurement of inductances, capacitance and frequency by A.C. Bridges.

Measurement of power in polyphase circuits, various wattmeter connections. A.C. and D.C. energy meters.

C.R.O. construction & principle measurement of voltage, current, frequency and phase by oscilloscope.

Electronic voltmeters – analog and digital. Digital multimeters, Audio oscillators, signal generators and frequency counter.

Text Books:
2. Electronic Instrumentation – H.S. Kalsi, ISTE/EXCEL BOOKS
3. Singh: Industrial Instrumentation &control 2/e Tata Mgraw-Hill, NewDel
4. Sawhney A K.: A course in Electrical & Electronic Measurements & Instruments, Dhanpat rai
5. Kalsi:Electronic Instrumentation TMH
6. Heltrick A.D. & Cooper W.D.: Modern Electronic Instrumentation & Measuring Instruments; Wheeler
7. Patranabis D: Sensors & Transducers, Wheeler 96
9. Satko: Industrial Instrumentations
11. Reissland: Electrical Measurement, New Age International
DATA STRUCTURES AND ALGORITHMS
Code: CS 302
Contact: 3L + IT
Credit: 4

Overview of C language
Time and Space analysis of Algorithms - Order Notations.

Linear Data Structures - Sequential representations - Arrays and Lists, Stacks, Queues and Dequeues, strings, Application.

Linear Data Structures, Link Representation - Linear linked lists, Circularly linked lists. Doubly linked lists, application.

Recursion - Design of recursive algorithms, Tail Recursion, When not to use recursion, Removal of recursion.

Hashing - Hashing Functions, collision Resolution Techniques.

Sorting and Searching Algorithms, Bubble sort, Selection Sort, Insertion Sort, Quicksort, Merge Sort, Heapsort and Radix Sort.

File Structures - Sequential and Direct Access. Relative Files, Indexed Files - B+ tree as index. Multi-indexed Files, Inverted Files, Hashed Files.

Text books:
1. Data Structures and Algorithms – O.G. Kakde and U.A. Deshpande, ISTE/EXCEL BOOKS
3. Drozek A –Data Structures and Algorithms
5. Ajay Agarwal- Data Structure Through C, Cyber Tech

References:
2. Data Structures Using C – M.Radakrishnan and V.Srinivasan, ISTE/EXCEL BOOKS
5. Tanenbaum A. S. , “Data Structures using ‘C’ "

MATERIAL SCIENCE
Code: MS 301
Contacts: 3L
Credits: 3

Introduction: Classification of materials; Structure-property Relations; Metals & Alloys, Ceramics, Polymers, Composites and Semiconductors. Atomic Structure & Interatomic Bonding ; Fundamentals of Atomic Structure and Chemical Bonding; Atomic Bonding in Solids.

Phase Diagrams: Phase Rules; Single component and Binary Phase diagrams; The Level Rule; Hume-Rothery rules of alloying.

Diffusion in solids: Fick’s Laws of Diffusion; The Atomic Model of Diffusion

Phase Transformations: Nucleation and Growth , Recovery, Re crystallization and Grain Growth.

Environmental Degradation of materials: Oxidation and Corrosion; Thermal and Photo Degradation ; Chemical Degradation ; Radiation Damage.

Structure of solids: Crystalline and Non-crystalline states; Crystallographic directions and phases; Determination of crystal structures.
Electronics & Electronics Engineering Syllabus

Defects and imperfections in solids: Point, Line and Planer defects; Interfacial defects and volume defects; impurities in solids.

Elastic, Plastic and Viscoelastic Behaviour of materials: Stress-strain relationship; relaxation and creep; strengthening mechanism and fracture.

Thermal properties of materials: Heat capacity; Thermal expansion and thermal conductivity.

Electrical properties: Electronic and Ionic conduction; Energy Band structures in solids; Electron Mobility; Temperature variation of conductivity.

Dielectric behaviour: Capacitance; Types of polarization; Frequency dependence of dielectric constant; Ferroelectricity and Piezoelectricity in materials.

Magnetic properties: Diamagnetic; Ferromagnetic, antiferromagnetic and Ferrimagnetic behaviour of materials; soft and hard magnetic materials; superconductivity.

Optimal properties: Light interaction with solids; Absorption, Transmission and Reflection; Luminescence; Photoconductivity; Lasers.

Materials selection: Material properties and Engineering Design parameters; General effects of processing on parameters; selection of structural; Electronic and Magnetic Materials – case studies.

Text Books:

Reference Books:

MATHEMATICS

Code: M 302
Contacts: 3L + 1T
Credits: 4

Fourier Series:
Introduction: Euler’s formula; Problems on general Fourier Series; Conditions for Fourier Expansion; Fourier Expansions of Discontinuous Functions; Even and Odd functions; Change of interval; Half range series; Typical Waveforms (Square, Saw-toothed, Triangular, Half Wave rectifier, Full Wave rectifier); Parseval’s Identity (statement only); Fourier Transform (FT) and its properties; Inverse Fourier Transform (statement only); Fourier transform of derivative (statement only); Convolution (statement only); Application of Fourier Transform in solving partial differential equations — Laplace’s Equation (2D only), Heat Conduction Equation (1D only) and Wave Equation (1D only).

Calculus of Complex Variable:
Functions; Limits and Continuity; Analytic Functions; Cauchy Riemann Conditions; Analytic Continuation; Complex Integration and Cauchy's Theorem; Cauchy's Integral Formula; Taylor's and Laurent Series; Zeros of an Analytic Function; Poles; Essential Singularities; Residue Theorem (statement only) and it's application to evaluation of integral; Introduction to Conformal Mapping; Simple problems.

Probability and Statistics:
Electronics & Electronics Engineering Syllabus

Mean, Median, Mode and Standard Deviation; Samples Space; Definition of Probability; Conditional Probability; General Multiplication Theorem; Independent Events; Bayes’ Theorem; Random Variable; Discrete and Continuous Probability Distributions - Probability mass function; Probability density function; Distribution Function; Expectation; Variance; Probability Distribution—Binomial, Poisson and Normal. Correlation and Regression; Method of Least Squares; Linear Curve Fitting.

Graph Theory:
Graphs; Digraphs; Isomorphism; Walk; Path; Circuit; Shortest Path: Dijkstra's Algorithm; Tree; Properties of Tree; Binary Tree; Fundamental Circuit; Minimal Spanning Tree: Kruskal's Algorithm; Prim’s Algorithm. Cut Set; Fundamental Cut and Cut Vertices; Matrix Representation of Graphs (Adjacency and Incidence Matrices); Network; Flow Augmenting Path; Ford-Fulkerson Algorithm for Maximum Flow; Max Flow – Min Cut Theorem (statement only).

Text Books:
1. Rathiur, Choudhari.: Discrete Structure And Graph Theory.
10. West D.B.: Introduction to Graph Theory - Prentice Hall
11. Deo N: Graph Theory with Applications to Engineering and Computer Science - Prentice Hall.
14. Jana Undergraduate Mathematics
15. Lakshminarayan- Engineering Math 1.2.3
16. Gupta- Mathematical Physics (Vikas)
17. Singh- Modern Algebra
18. Rao B: Differential Equations with Applications & Programs, Universities Press
19. Murray: Introductory Courses in Differential Equations, Universities Press
22. Chowdhury: Elements of Complex Analysis, New Age International
23. Bhat: Modern Probability Theory, New Age International
26. Dhami: Differential Calculus, New Age International

NUMERICAL METHODS AND PROGRAMMING
Code : CS 312
Contacts : 3L
Credits : 3

Approximation in numerical computation, Truncation and rounding errors;
Interpolation: Lagrange’s Interpolation, Newton forward & backward differences Interpolation, Newton divided difference;
Numerical Integration: Trapezoidal, Rule, Simpson’s 1/3 Rule, Weddle’s Rule;
Numerical Solution of a system of linear equation
Gauss elimination method, Matrix Inversion, LU Factorization method, Gauss Jacobi method, Gauss Seidel method;
Algebraic Equation: Bisection method, Secant method, Regular-Falsi method, Newton-Raphson method;
Numerical solution of ordinary differential equation: Taylor’s series method, Euler’s method, Runge-kutta method, and Predictor-Corrector method;
C Language Overview: Loop, recursion, function, array, pointers, structures, various types of file access methods: Sequential, Indexed Sequential, Random;
Various types of files in C and various types file handling statements in C
Implementation above Numerical & Statistical Problems in C Language.
Electronics & Electronics Engineering Syllabus

Text Books:

2. Numerical Mathematical Analysis by J.B.Scarborough
3. C Language and Numerical Methods by C.Xavier
4. Introductory Numerical Analysis by Dutta & Jana
5. Balagurusamy: Numerical Methods
7. Numerical Methods (Problems and Solution) by Jain, Iyengar , & Jain
12. Numerical Methods for Engineers – Gupta, New Age International
18. Applied Discrete Structures – Joshi, New Age International

CIRCUITS & NETWORK LAB
Code: EE 391
Contact: 3P
Credit: 2

List of Experiments:

1. Transient response in R-L and R-C Network: Simulation/hardware
2. Transient response in R-L-C Series & Parallel circuits Network: Simulation/hardware
3. Determination of Impedance (Z) and Admittance(Y) parameters of two port network
4. Frequency response of LP and HP filters
5. Frequency response of BP and BR filters
6. Generation of Periodic, Exponential, Sinusoidal, Damped sinusoidal, Step, Impulse, Ramp signals using MATLAB in both discrete and analog form
7. Evaluation of convolution integral, Discrete Fourier transform for periodic & non-periodic signals and simulation of difference equations using MATLAB
8. Representation of poles and zeros in z-plane, determination of partial fraction expansion in z-domain and cascade connection of second order system using MATLAB
9. Determination of Laplace transform and inverse Laplace transformation using MATLAB
10. Spectrum analysis of different signals

Note: An Institution/College may opt for some other software or hardware simulation wherever possible in place of MATLAB

ELECTRICAL AND ELECTRONIC MEASUREMENT LAB
Code: EE 392
Contact: 3P
Credit: 2

List of Experiments:

1. Instrument workshop- observe the construction of PMMC, Dynamometer, Electro thermal and Rectifier type instrument, Oscilloscope and digital multimeter
2. Calibrate moving iron and electrodynamometer type ammeter/volmeter by potentiometer
3. Calibrate dynamometer type Wattmeter by potentiometer
Electronics & Electronics Engineering Syllabus

4. Calibrate A.C. energy meter
5. Measure the resistivity of material using Kelvin Double Bridge
7. Measurement of Power in Polyphase circuits
8. Measurement of Frequency by Wien Bridge using Oscilloscope
9. Measurement of Inductance by Anderson Bridge
10. Measurement of Capacitance by De Sauty Bridge

DATA STRUCTURE LAB
Code: CS 392
Contact: 3P
Credit: 2

Experiments should include but not limited to:
- Implementation of array operations
- Stacks and Queues: adding, deleting elements
- Circular Queue: Adding & deleting elements
- Merging Problem: Evaluation of expressions operations on Multiple stacks & queues:
- Implementation of linked lists: inserting, deleting, inverting a linked list.
- Implementation of stacks & queues using linked lists:
- Sparse Matrices: Multiplication, addition.
- Recursive and Non-recursive traversal of Trees
- Threaded binary tree traversal.
- AVL tree implementation.
- Application of Trees, Application of sorting and searching algorithms
- Hash tables implementation: searching, inserting and deleting, searching & sorting techniques.

NUMERICAL METHODS & PROGRAMMING LAB
Code: CS 382
Contact: 3P
Credit: 2

1. Assignments on Interpolation: Newton forward & backward, Lagrange
2. Assignments on Numerical Integration: Trapezoidal Rule, Simson’s 1/3 Rule, Weddle’s Rule
3. Assignments on Numerical solution of a system of linear equation: Gauss elimination, Gauss Jacobi, Matrix Inversion, Gauss Seidal
4. Assignments on Algebraic Equation: Bisection, Secant, Regular-falsi, Newton Raphson
5. Assignments on Ordinary Differential Equation: Taylor Series, Euler’s method, Runga-Kutta

Assignments on Statistical Problem: Mean, Median, Mode, Standard deviation (for simple & frequency type data), Correlation & Regression

COURSE STRUCTURE IN ELECTRICAL & ELECTRONICS ENGINEERING (EEE)
(For one batch only admitted in Siliguri Institute of Technology(SIT), academic session 2001-2002)

FOURTH SEMESTER

ELECTRONICS & INSTRUMENTATION ENGINEERING

ANALOG ELECTRONIC CIRCUITS
Code: EC 401
Contacts: 3L
Credits: 3
Electronics & Electronics Engineering Syllabus

Power amplifiers – Class A, B, AB, C, Tuned amplifier.

Linear voltage regulator : series and shunt. Switched mode power supply.

Text Book:
2. Franco—Design with Operational Amplifiers & Analog Integrated Circuits, 3/e, TMH
4. Gayakwad—ADDYDOpAmps Dand DLinear DIC’s, PHI

Reference:
1. Malvino—Electronic Principles, 6/e ,TMH
2. Millman & Taub- Pulse, Digital & switching waveforms- TMH
3. Horowitz & Hill- The Art of Electronics; Cambridge University Press.
5. Boyle’s stead & Nashelsky: Electronic Devices & Circuit theory, PHI.
6. Millman & Halkias: Basic Electronic Principles; TMH.

DIGITAL ELECTRONICS & INTEGRATED CIRCUITS

Code : EC 402
Contacts : 3L + 1T
Credits : 4

Data and number systems, Binary representation, Codes and their conversions: BCD, Octal, Hexadecimal, ASCII, EBDIC, Gray, Signed binary number representation with 1’s and 2’s complement methods, Binary arithmetic.

Boolean algebra, Venn diagram, logic gates and circuits, Minimization of logic expressions by algebraic method, K-map method and Quine Mc Clauskey method

Combinational circuits- adder, subtractor, encoder, decoder, comparator, multiplexer, de-multiplexer, parity generator, etc

Design of combinational circuits- Programming logic devices and gate arrays.

Sequential Circuits- Flip Flops, various types of Registers and counters and their design, Irregular counter, State table and state transition diagram, sequential circuits design methodology.

Different types of A/D and D/A conversion techniques.

Different Logic families- TTL, ECL, MOS and CMOS, their operation and specifications.

Memory Systems: RAM, ROM, EPROM, EEROM

Textbooks:
1. Jain—Modern Digital Electronics, 2/e, TMH
2. Leach & Malvino—Digital Principles & Application, 5/e, TMH
3. Digital Logic Design- Morries Mano, PHI.

Reference:
3. Digital Technology- Virendra Kumar, New Age.

ELECTRONIC MEASUREMENT AND INSTRUMENTATION
EI 402
Contacts: 3L
Credits: 4

Measurement – basic concept and block diagrams of instrumentation schemes. Static & dynamic characteristics – accuracy, precision, fidelity, speed of response, dynamic calibrations.

Errors in measurement-classification of errors e.g. equipment error, interference error etc. Data quality. Statistical analysis – mean mode, median, measures of dispersions. Probable error-distribution functions and tables. Confidence level, significance test. Introduction to reliability. Units and standards of physical quantities – documentation standards. Introduction to OPAMPS and detail circuits.

Measurement of high frequencies RF and VHF

Text:
1. Jain—Digital Electronics, 2/e, TMH
2. Kalsi—Electronic Instrumentation, TMH
3. Malvino & Leach – Digital Principles & Application, 5/e, TMH
5. Dhir S.M—Applied Electronics & Instrumentation, TMH

Reference:
1. Taub & Schilling – Digital Integrated Electronics, TMH
4. Bowens – Digital Instrumentation, TMH
5. Jones—Instrumentation, Measurement & Feedback, TMH

Computer Organisation & Architecture
Code: CS 404
Contacts: 3L
Credits: 3

Concepts & Terminology: Digital computer concepts; Von-Neumann concept; Hardware & Software and their nature; structure & functions of a computer system, Role of operating system.

Memory Unit: Memory classification, characteristics; Organization of RAM, address decoding ROM/PROM/EEPROM; Magnetic memories, recording formats & methods, Disk & tape units; Concept of memory map, memory hierarchy, Associative memory organization; Cache introduction, techniques to reduce cache misses, concept of virtual memory & paging.

CPU Design: The ALU – ALU organization, Integer representation, 1s and 2s complement arithmetic; Serial & Parallel Address; implementation of high speed Address Carry Look Ahead & carry Save Address; Multiplication of signed binary numbers-Booth’s algorithm; Divide algorithms- Restoring & Non-Restoring; Floating point number arithmetic; Overflow detection, status flags.

Instruction Set Architecture- Choice of instruction set ; Instruction word formats ; Addressing modes.

Control Design – Timing diagrams; T-States, Controlling arithmetic & logic instruction, control structures; Hardwired & Micro programmed, CISC & RISC characteristics.

Pipelining-general concept, speed up, instruction & arithmetic pipeline; Examples of some pipeline in modern processors, pipeline hazards; Flynn’s classification –SISD, SIMD, MISD, MIMD architectures-Vector and Array processors & their comparison, Concept of Multiprocessor; Centralized & distributed architectures.

Input/output Organization: Introduction to Bus architecture, effect of bus widths, Programmed & Interrupt I/O, DMA.

Text:
1. Hayes-- Computer Architecture & Organization, 3/e, MH
Electronics & Electronics Engineering Syllabus

2. Carter—Computer Architecture (Schaum Series), TMH
3. Mano M.M—“Computer System Architecture”

Reference:
1. Hamacher—Computer Organization, 5/e, MH
2. Stallings W—“Computer Organization & Architecture”, MH

TRANSDUCERS & SENSORS
EI 401
Contacts: 3L
Credits: 3

IR and UV detectors, ionisation chambers. Radiation pyrometers. Ultrasonic devices, magnetostrictive devices. Photo-detectors, photo-multipliers, LDR, LED's

Books:
1. Doebelin E.O. - Measurement System ; Application & Design, MGH Tokyo
7. Dhiv S M- Applied Electronics & Instrumentation,

EC 491
ANALOG ELECTRONIC CIRCUITS LAB
Contacts: 3P
Credits: 2

1. Introduction: Study of characteristics curves of B.J.T & F.E.T.
2. Construction of a two-stage R-C coupled amplifier & study of it’s gain & Bandwidth.
3. Study of class A & class B power amplifiers.
5. Realization of current mirror & level shifter circuit using Operational Amplifiers.
9. Construction of a simple function generator using IC.
11. Realization of a phase locked Loop using Voltage Controlled Oscillator (VCO).
12. Study of D.A.C & A.D.C.

EC 492
DIGITAL ELECTRONIC & INTEGRATED CIRCUITS LAB
Contacts: 3P
Credits: 2

1. Realization of basic gates using Universal logic gates.
2. Code conversion circuits- BCD to Excess-3 & vice-versa.
3. 4-bit parity generator & comparator circuits.
5. Design of combinational circuit for BCD to decimal conversion to drive 7-segment display using multiplexer.
Electronics & Electronics Engineering Syllabus

13. Design of Sequential Counter with irregular sequences.
15. Construction of adder circuit using Shift Register & full Adder.

Electronic Measurements and Instrumentation Lab
Code: EI 492
Contacts: 3P
Credits: 2

1. Study of static characteristics (accuracy, precision, hysteresis, repeatability, linearity) of a measuring instrument.
2. Study of dynamic characteristic (fidelity, speed of response)
3. Acquaintance with basic structure of DMM and measurement of different electrical parameters
4. Statistical analysis of errors in measurement using computer simulation
5. Study of A/D converter along with its associate circuitry
6. Study of D/A converter
7. Realization of Data Acquisition system
8. Wave and spectrum analysis using Q meter
9. Measurement of HF and VHF

EI 491
TRANSUDER & SENSORS LAB
Contacts: 3 P
Credit: 2

1. Study of two Channel Voltage to Circuit transmitter (V-I Transmitter)
2. Study of two Channel I-V Receiver (Converter).
3. Temperature measurement using AD590 Semiconductor temperature sensor.
4. Displacement measurement by Capacitive Transducer.
5. Pressure & Displacement measurement by Linear Variable Displacement Transducer (LVDT).
6. Study of load cell. (To study the load cell behavior for tensile & compressive load).
7. Torque measurements by Strain Gauge Transducer.
10. Relative Humidity measurement using Capacitive Transducer.
13. Studies of L.D.R

TECHNICAL REPORT WRITING & LANGUAGE PRACTICE LABORATORY
Code: HU 481

Contact: 3
Credits: 2

Topics to be covered and number of hours required for it:

1. Introductory lecture is to be given to the students so that they get a clear idea of the syllabus and understand the need for having such a practice lab in the first place(3 hours)
2. Conversion practice is done on given situation topics. The students are also made to listen to pre-recorded cassettes produced by British Council and also by the Universities of Oxford and Cambridge (6 hours)
3. Group Discussions:- The students are made to understand the difference between the language of conversion and group discussion. Strategies of such discussions are to teach to them. It is also helpful to use videocassettes produced by the U.G.C. on topics like group-discussion. After wards the class is divided into groups and the students have to discuss on given topics on current socio-economic-political-educational importance(12 hours)
4. Interview sessions-students are taught the do’s and don’ts of facing a successful interview. They then have to face rigorous practices of mock-interviews. There simulations of real life interview sessions where students have to face an interview panel(12 hours)
5. Presentations: The secrets of an effective presentation are taught to the students. Then each and every student has to make lab presentations with the help of the Overhead projector/using power point presentation and other audio-visual aids in the laboratory. They also have to face the question answer sessions at the end of their presentation (12 hours)

6. Classes are also allotted to prepare the students for competitive examinations like the T.O.E.F.L. by making the students listen to specially produced C.D. cassettes of such examinations (3 hours)

The overall aim of this course is to inculcate a sense of confidence in the students and help them to become good communicators in their social as well as professional lives.

Text:
1. Sharma—Business Correspondence & Report Writing, TMH
2. Prasad—Group Discussion & Interview (With Audio Cassette), TMH

Reference:
1. Sashi Kumar—Spoken English (with Cassette), TMH

WEST BENGAL UNIVERSITY OF TECHNOLOGY

Electrical Machines I
EEE 501
Contacts: 3L+1T
Credits: 4

Transformer: Construction, Operating principles of single phase & three phase transformer, Emf equation, Phasor diagram, Equivalent circuit, Different transformer connections and their vector groups, Scott connection, Paralleling of single phase and three phase transformer, Testing of transformers, Auto Transformers.

DC Machines: Construction of DC machines. Operating principles of DC generator, Emf equation, Different excitation systems, Armature reaction, Commutation, Characteristics of separately excited and self excited generators, Voltage regulation, Parallel operation of DC generators, Operating principles of DC motors, Torque equation, Characteristics of separately excited and self excited motors, Testing of motors, Starting and speed control of DC motors, Speed regulation.

BOOKS:

- Bhimbra P.S.: Electrical Machinery; Khanna Pub
- Nagrath I.J. & Kothari D.P.: Electric Machines, TMH
- Mukherjee P K & Chakraborty S: Electrical Machines; Dhanpat Rai Pub.
- Sen S K: Electrical Machines; Khanna Pub.
- Clayton A.E. & Hancock N N: Performance & Design of Direct Current Machines, CBS Pub. & Distributors;
- Parker Smith- Problems in Electrical Engg: - CBS Pub & Distributors.
- Gupta: Fundamentals of Electrical Machines, New Age International
- Bhattacharya: Control of Electrical Machines, New Age International
- Bhattacharya: Experiments in Basic Elect Engg; New Age International
- Athani: Stepper Motors

Power Electronics
Code: EE 504
Contacts 3L
Credits: 3

Converter operation: Overlap, power factor, inversion, regulation, P-pulse converters, power factor control via PWM converters.
Electronics & Electronics Engineering Syllabus

D.C. line commutation: Series and parallel capacitor turn off, resonant turn off, impulse commutation.

Frequency conversion: Cycloconverter single and three phase circuits, blocked group operation, circulating current mode. Single phase and three phase inverters, constant voltage source and constant current source inverters, HF inverters for heating.

BOOKS:

1. Rammurthy M – An Introduction to Thyristors and their applications
2. Lauder C W - Power Electronics, 3rd Edn. MHI 1993
3. Sen P C – Power Electronics, TMH
5. Dubey S K – Thyristorised Power Controller, John Wiley & Sons
7. Dewan S B & Stranghen A – Power Semiconductors circuit
11. Subramanyam: Power Electronics, New Age International

Control Systems

Code: EE 503
Contacts: 3L+1T
Credits: 4

Concept of feedback and Automatic Control, Electrical analogy of physical system. Transfer Function, Block diagram representation of Control Systems, Block Diagram Algebra, Signal Flow Graph, Mason’s gain formula.

Improvement of system performance through compensation. Case studies on control voltage, current, frequency, position and speed. Control of liquid level, density, flow, temperature etc.

BOOKS:

1. Kuo B.C. Automatic Control System, PHI
4. Ogata K : Modern Control Engg. PHI
5. Dorf R C & Bishop R.H.: Modern Control System ; Addison – Wisley
6. Bolton: Industrial Control & Instrumentation, Orient Longman
7. Nakra: Theory & Applications of Automatic Control, New Age International
8. Gopal: Modern Control System Theory, New Age International
9. Gopal: Digital Control Engineering, New Age International
10. Sinha: Control Systems, New Age International

Electromagnetic Theory

Code: EEE 502
Contacts: 3L+1T
Credits: 4

Electric field: Potential and potential gradient, Stoke’s theorem, Green’s theorem, Divergence and Curl equations, Laplace and Poisson’s equations, Helmholtz theorem. Field equations in different coordinate systems, Boundary conditions and solution of electrostatic problems.
Electronics & Electronics Engineering Syllabus

Magnetic field: Scalar and vector potential, field equations for Ampere’s law, Divergence and curl of magnetic field, Force and Torque equations, Field equations in different coordinated systems, Boundary conditions and solution of magnetic field problems.

Electromagnetic field: Time varying field and Faradays law, Displacement current, energy flow, Poynting theorem, Poynting vector, Maxwells field equations vs. circuit equations, electromagnetic radiation, uniform plane wave equation & solution, skin depth, reflection and refraction of plane waves, RF lines, Smith chart.

Propagation: Different modes of radio wave propagation, ionospheric propagation, MUF, critical frequency, skip distance, duct propagation, troposphere propagation

Reference:
1. Hayt: Engineering Electromagnetics TMH
Electronics & Electronics Engineering Syllabus

Microprocessor & Microcontroller
Code: EI 502
Contacts: 3L+1T
Credits: 4

Introduction to 8085A CPU architecture-register organization, addressing modes and their features. Software instruction set and Assembly Language Programming. Pin description and features.

Instruction cycle, machine cycle, Timing diagram.

Hardware Interfacing: Interfacing memory, peripheral chips (IO mapped IO & Memory mapped IO).

Interrupts and DMA.

Peripherals: 8279, 8255, 8253, 8237, 8259, A/D and D/A converters and interfacing of the same.

Typical applications of a microprocessor.

16 bit processors: 8086 and architecture, segmented memory has cycles, read/write cycle in min/max mode. Reset operation, wait state, Halt state, Lock state, Lock operation, interrupt processing. Addressing modes and their features. Software instruction set (including specific instructions like string instructions, repeat, segment override, lock prefixes and their use) and Assembly Language programming with the same.

Brief overview of some other microprocessors (eg. 6800 Microprocessor).

References:
3. An introduction to micro computers Vol. 2 – some real Microprocessor – Galgotia Book Source, New Delhi by Adam Osborne and J. Kane
4. Advanced Microprocessors by Ray and Bhurchandi - TMH
7. Assembly Language Programming the IBM PC by Alan R. Miller, Subex Inc, 1987

Electrical Machines Lab
EEE 593
Contacts: 3P
Credits: 2

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of the experiment</th>
<th>No. of hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>No load and short circuit test of single phase transformer</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Study of transformer connections</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>No load characteristics of DC generator and build up Phenomenon</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>Load characteristics of DC generator</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>Speed control of DC shunt motor (Armature & field voltage control with Rheostat)</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>Swinburn Test</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>Hopkinson Test of shunt machine</td>
<td>3</td>
</tr>
</tbody>
</table>

Power Electronics Lab
Code: EE 594
Contact: 3P
Credit: 2
1. STUDY OF V-J CHARACTERISTICS OF AN SCR.
2. STUDY OF V-J CHARACTERISTICS OF A TRIAC.
3. STUDY OF DIFFERENT TRIGGERING CIRCUITS FOR THYRISTOR.
4. STUDY OF UNI-JUNCTION TRANSISTOR (UJT) TRIGGERING CIRCUIT.
5. STUDY OF A FIRING CIRCUIT SUITABLE FOR SINGLE PHASE HALF CONTROLLED CONVERTOR.
6. SIMULATION ON THE SINGLE PHASE AC-DC UNCONTROLLED CONVERTOR WITH & WITHOUT THE SOURCE INDUCTANCE.
7. SIMULATION OF A SINGLE PHASE AC TO CONTROLLED DC CONVERTOR WITH & WITHOUT THE SOURCE INDUCTANCE.
8. SINGLE PHASE HALF CONTROLLED BRIDGE CONVERTOR WITH TWO THYRISTORS & TWO DIODES.
9. SINGLE PHASE FULLY CONTROLLED BRIDGE CONVERTOR USING FOUR THYRISTORS.
10. PSPICE SIMULATION OF DC TO DC STEP DOWN CHOPPER.
11. PSPICE SIMULATION OF SINGLE PHASE CONTROLLER WITH R-L LOAD.
12. PSPICE SIMULATION OF PWM BRIDGE INVERTOR OF R-L LOAD USING MOSFET.

Control System Lab
Code: EE 593
Contacts: 3P
Credit: 2

1) Familiarisation with MAT- Lab- control system tool box, MAT –Lab- simulink tool box & PSPICE.
2) DETERMINATION OF STEP RESPONSE FOR FIRST ORDER & SECOND ORDER SYSTEM WITH UNITY FEEDBACK ON CRO & CALCULATIONS OF CONTROL SYSTEM SPECIFICATIONS LIKE TIME CONSTANT , % PEAK OVERSHOOT, SETTLING TIME ETC., FROM THE RESPONSE.
3) SIMULATION OF STEP RESPONSE & IMPULSE RESPONSE FOR TYPE-0 , TYPE-1 & TYPE –2 SYSTEM WITH UNITY FEEDBACK USING MATLAB & PSPICE.
4) DETERMINATION OF ROOT LOCUS, BODE- PLOT, NYQUIST PLOT USING MATLAB- CONTROL SYSTEM TOOLBOX FOR 2ND ORDER SYSTEM & DETERMINATION OF DIFFERERNT CONTROL SYSTEM SPECIFICATIONS FROM THE PLOT.
5) DETERMINATION OF PI, PD, PID CONTROLLER ACTION OF FIRST ORDER SIMULATED PROCESS.
6) DETERMINATION OF APPROXIMATE TRANSFER FUNCTION EXPERIMENTALLY FROM BODE PLOT.
7) EVALUATION OF STEADY STATE ERROR, SETTING TIME, PERCENTAGE PEAK OVERSHOOT, GAIN MARGIN, PHASE MARGIN WITH ADDITION OF LEAD COMPENSATOR & BY COMPENSATOR IN FORWARD PATH TRANSFER FUNCTION FOR UNITY FEED BACK CONTROL SYSTEM USING PSPICE OR OTHERWISE.
8) STUDY OF A PRACTICAL POSITION CONTROL SYSTEM & DETERMINATION OF CONTROL SYSTEM SPECIFICATIONS FOR VARIATION OF SYSTEM PARAMETERS.
Microprocessor & Microcontroller Lab

Code: EI 592
Contacts: 3P
Credits: 2

Details same as that of EI 592

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of the Experiments</th>
<th>No. of hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Familiarization with 8085 register level architecture and trainer kit components, including the memory map. Familiarization with the process of storing and viewing the contents of memory as well as registers.</td>
<td>3</td>
</tr>
<tr>
<td>2. a)</td>
<td>Study of prewritten programs on trainer kit using the basic instruction set (data transfer, Load/Store, Arithmetic, Logical)</td>
<td>3</td>
</tr>
<tr>
<td>2. b)</td>
<td>Assignments based on above.</td>
<td></td>
</tr>
<tr>
<td>3. a)</td>
<td>Familiarization with 8085 simulator on PC.</td>
<td>3</td>
</tr>
<tr>
<td>3. c)</td>
<td>Study of prewritten programs using basic instruction set (data transfer, Load/Store, Arithmetic, Logical) on the simulator.</td>
<td></td>
</tr>
<tr>
<td>3. b)</td>
<td>Assignments based on above</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Programming using kit/simulator for</td>
<td></td>
</tr>
<tr>
<td>i)</td>
<td>table look up</td>
<td>9</td>
</tr>
<tr>
<td>ii)</td>
<td>Copying a block of memory</td>
<td></td>
</tr>
<tr>
<td>iii)</td>
<td>Shifting a block of memory</td>
<td></td>
</tr>
<tr>
<td>iv)</td>
<td>Packing and unpacking of BCD numbers</td>
<td></td>
</tr>
<tr>
<td>v)</td>
<td>Addition of BCD numbers</td>
<td></td>
</tr>
<tr>
<td>vi)</td>
<td>Binary to ASCII conversion</td>
<td></td>
</tr>
<tr>
<td>vii)</td>
<td>String Matching</td>
<td></td>
</tr>
<tr>
<td>viii)</td>
<td>Multiplication using Booth’s Algorithm</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Program using subroutine calls and IN/OUT instructions using 8255 PPI on the trainer kit eg. subroutine for delay, reading switch state & glowing LEDs accordingly, finding out the frequency of a pulse train etc</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>Interfacing any 8-bit Latch (eg. 74LS373) with trainer kit as a peripheral mapped output port with absolute address decoding</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>Interfacing with I/O modules:</td>
<td>12</td>
</tr>
<tr>
<td>a)</td>
<td>ADC</td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>Speed control of mini DC motor using DAC</td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>Keyboard</td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>Multi-digit Display with multiplexing</td>
<td></td>
</tr>
<tr>
<td>e)</td>
<td>Stepper motor</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Writing programs for ‘Wait Loop (busy waiting)’ and ISR for vectored interrupts (eg. counting number of pulses within specified time period)</td>
<td>3</td>
</tr>
<tr>
<td>9. a)</td>
<td>Study of 8051 Micro controller kit and writing programs for the following tasks using the kit</td>
<td>6</td>
</tr>
<tr>
<td>b)</td>
<td>Table look up</td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>Basic arithmetic and logical operations</td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>Interfacing of Keyboard and stepper motor</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Familiarization with EPROM programming and Erasing</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective-I

1. **PROCESS CONTROL INSTRUMENTATION**
 CODE: EEE 606/1

2. **NON CONVENTIONAL ENERGY**
 CODE: EEE 606/2

ELECTRICAL MACHINES - II
CODE: EEE 601
CONTACTS: 3L + 1T
Electronics & Electronics Engineering Syllabus

CREDITS : 4

INDUCTION MOTOR – CONCEPT OF ROTATING MAGNETIC FIELD, STARTING METHODS. TORQUE-SPEED CHARACTERISTICS. CIRCLE DIAGRAM, SPEED CONTROL. TESTING & PARAMETERS OF EQUIVALENT CIRCUITS.

FRACTIONAL HORSE POWER MOTORS – SINGLE PHASE INDUCTION MOTOR. SINGLE PHASE COMMUTATOR MOTOR – COMPENSATION. RELUCTANCE MOTOR, PERMANENT MAGNET MACHINES, STEPPER MOTOR.

BOOKS
ALTERTING CURRENT MACHINES – A. Langsdorff
ELECTRICAL MACHINES – BHIMBRA
AC COMMUTATOR MOTORS – Taylor
FRACTIONAL HORSE POWER MOTORS – Veinott

ELECTRICAL MACHINES – II LAB
CODE : EEE 691
CONTACTS : 3P
CREDITS : 2

1. TESTING OF ALTERNATORS – SYN. IMPEDANCE METHOD.
2. Z.P.F. TEST & POTIER REACTANCE (NON-SALIENT POLE MACHINE) DETERMINATION.
3. DETERMINATION OF X_d & X_q AND REGULATION OF SALIENT POLE MACHINE AND PLOTTING OF V CURVE
4. PARAMETER DETERMINATION BY NO-LOAD & BLOCKED ROTOR TESTS OF 3 PHASE INDUCTION MOTOR.
5. USE OF STAR/DELTA STARTER, LOAD TEST OF 3 PHASE INDUCTION MOTOR.
6. STARTING & SPEED-TORQUE CHARACTERISTIC OF SINGLE PHASE INDUCTION MOTOR.

ELECTRIC DRIVES
CODE : EEE 604
CONTACTS : 3L + 1T
CREDITS : 4

INTRODUCTION TO DC MOTOR DRIVE, CHARACTERISTICS OF DC MOTORS, SPEED REGULATION OF DC MOTORS BY PHASE CONTROLLED CONVERTER, SPEED REGULATION OF DC MOTOR BY DC CHOPPER, REGENERATIVE DRIVES, RECENT DEVELOPMENTS.

INTRODUCTION TO AC MOTOR DRIVE, CHARACTERISTICS OF AC INDUCTION MOTOR, SPEED REGULATION OF 3 PHASE INDUCTION MOTOR BY VOLTAGE & CURRENT SOURCE INVERTER, RECENT DEVELOPMENTS.

CONTROL TECHNIQUES OF POWER-ELECTRONIC DRIVES, MICROCONTROLLER & DSP BASED DRIVES.

INTRODUCTION TO ARTIFICIAL INTELLIGENCE BASED DRIVES.

BOOKS
POWER ELECTRONICS – RASHID
POWER ELECTRONICS – RASHID & KHANCHANDANI
POWER ELECTRONICS – P. C. SEN
SOLID STATE AC DRIVES – B. K. BOSE

ELECTRIC DRIVES LAB
CODE : EEE 694
CONTACTS : 3P
CREDITS : 2
Electronics & Electronics Engineering Syllabus

1. STUDY OF PHASE – CONTROLLED RECTIFIER (FULL CONVERTER) BASED DC MOTOR DRIVE.
2. STUDY OF DC – CHOPPER BASED DC DRIVES
3. STUDY OF IGBT BASED 3-PHASE INDUCTION MOTOR DRIVE.
4. GENERATION OF PWM CONTROL SIGNAL FOR MOSFET INVERTER USING MICROCONTROLLER.
5. GENERATION OF PWM CONTROL SIGNAL FOR MOSFET INVERTER USING DSP (TMS320050).
6. PSPICE SIMULATION OF MOSFET CHOPPER BASED DC DRIVES.
7. PSPICE SIMULATION OF MOSFET INVERTER BASED INDUCTION MOTOR DRIVE.

POWER SYSTEM - I
CODE: EEE 603
CONTACTS: 3L + 1T
CREDITS: 4

OVERHEAD LINES – TYPES OF CONDUCTORS & SUPPORT STRUCTURES. CALCULATION OF INDUCTANCE & CAPACITANCE OF OVERHEAD LINES & CABLES.

TYPES OF INSULATORS IN TRANSMISSION LINES – STRING EFFICIENCY.

DESIGN OF OVERHEAD LINES – SAG, TENSION, SPACING FOR EHV LINES, CORONA LOSS – RELATED IEE RULES. CABLES – DIELECTRIC STRESS & GRADIENT, LEAKAGE, LOSS & HEATING – CAUSES OF FAILURE.

PERFORMANCE OF LINES – SHORT, MEDIUM & LONG LINES, NOMINAL & EQUIVALENT T & I CIRCUIT REPRESENTATION, SURGE IMPEDANCE, FERRANTI EFFECT, REGULATION & LINE LOSS.

PER UNIT SYSTEM – ADVANTAGE, CONVERSION OF IMPEDANCE & CHANGE OF BASE FOR ALTERNATORS & TRANSFORMERS (DIFFERENT 3 PHASE CONNECTIONS)

POWER TRANSMISSION – EXPRESSION FOR ACTIVE & REACTIVE FLOW & ITS EFFECT ON BUS VOLTAGE. PHASE SHIFT & TORQUE ANGLE.

GROUNDING SYSTEMS – PROTECTION AGAINST SYMMETRICAL FAULT, COMPUTATION OF BREAKER RATING. ASYMMETRICAL FAULTS – ANALYSIS USING POSITIVE, NEGATIVE & ZERO SEQUENCE COMPONENTS. DIFFERENTIAL PROTECTION OF BUS BARS, ALTERNATORS, TRANSFORMERS. USE OF C.T. & P.T IN POWER SYSTEM. SEQUENCE SEGREGATION FILTER FOR UNBALANCED FAULT COMPONENTS.

BOOKS

POWER SYSTEM – I LAB
CODE: EEE 693
CONTACTS: 3P
CREDITS: 2

1. SIMULATION OF TRANSMISSION LINES & MEASUREMENT OF ACTIVE POWER FLOW USING MODEL OF SHORT LINES.
2. STUDY OF SYMMETRICAL FAULT OF A POWER SYSTEM WITH GENERATING SOURCES.
3. MEASUREMENT & VERIFICATION OF ACTIVE & REACTIVE POWER FLOW. COMPENSATION OF VAR AT THE RECEIVING END USING LONG LINE MODEL.
4. SEQUENCE FILTERS WITH 3 PHASE UNBALANCE FAULTS & STUDY OF THEIR PERFORMANCE.
5. EXPERIMENTS ON DIFFERENTIAL RELAYS FOR PROTECTION OF BUS BARS, ALTERNATORS & TRANSFORMERS.
6. PROTECTION SYSTEM FOR FAILURE OF PROME MOVER & EXCITATION OF ALTERNATORS.

HEAT POWER ENGINEERING
CODE: ME 602
CONTACTS: 3L + 1T
CREDITS: 4
Electronics & Electronics Engineering Syllabus

WATER TUBE & FIRE TUBE BOILERS, CIRCULATING PRINCIPLES, FORCED CIRCULATION, CRITICAL PRESSURE, SUPERHEATERS, REHEATERS, ATTEMPERATORS, INDUCED DRAUGHT, FORCED DRAUGHT AND SECONDARY AIR FANS, BOILER PERFORMANCE ANALYSIS AND HEAT BALANCE, COMBUSTION SYSTEMS, ENVIRONMENTAL PROTECTION – ESP, CYCLONE SEPARATOR, DUST COLLECTOR ETC.

ROTARY THERMODYNAMIC DEVICES – STEAM TURBINES & THEIR CLASSIFICATIONS – IMPULSE & REACTION TYPE TURBINES, THERMODYNAMICS OF COMPRESSIBLE FLUID-FLOW, EQUATION AND CONTINUITY – ISENTROPIC FLOW THROUGH NOZZLES, VELOCITY DIAGRAM, BLADE EFFICIENCY, OPTIMUM VELOCITY RATIO, MULTI-STAGING, VELOCITY & PRESSURE COMPOUNDING, LOSSES IN TURBINES, EROSION OF TURBINE BLADES, TURBINE GOVERNING, PERFORMANCE ANALYSIS OF TURBINE, CONDENSING SYSTEM.

IC ENGINES – CLASSIFICATION. ANALYSIS OF A STANDARD CYCLE. FUEL CHARACTERISTIC OF SI & CI ENGINE, COMBUSTION, ENGINE PERFORMANCE. AUTOMOTIVE ENGINE EXHAUST EMISSION AND THEIR CONTROL.

GAS TURBINE ANALYSIS – REGENERATION - REHEATING, ISENTROPIC EFFICIENCY. COMBUSTION EFFICIENCY.

TEXT:
1. P.K.NAG- ENGINEERING THERMODYNAMICS – TMH ,2/E
2. P K NAG- POWER PLANT ENGG. - TMH PUB
3. P.S. BALLANEY- THERMAL ENGINEERING – KHANNA PUB
4. DOMKUNDWAR & ARORA- POWER PLANT ENGINEERING – DHANPAT RAI & CO.

REFERENCE:
1. CENGEL – THERMODYNAMICS , 3/E ,TMH
2. ET-WAKIL—POWER PLANT ENGINEERING , MH

HEAT POWER ENGG. LAB
CODE: ME 692
CONTACTS: 3P
CREDITS: 2
1. STUDY OF CUT MODELS – BOILERS IC ENGINES
 - LANCHASHIRE BOILER
 - BABCOCK & WILLCOX BOILER
 - COCHRAN BOILER
 - VERTICAL TUBULAR BOILER
 - LOCOMOTIVE BOILER
 - 4S DIESEL ENGINE
 - 4S PETROL ENGINE
 - 2S PETROL ENGINE

2. LOAD TEST ON 4 STROKE PETROL ENGINE & DIESEL ENGINE BY ELECTRICAL LOAD BOX.
3. LOAD TEST ON 4 STROKE DIESEL ENGINE BY ROPE BRAKE DYNAMOMETER.
4. HEAT BALANCE ON 4 STROKE DIESEL ENGINE BY ROPE BRAKE DYNAMOMETER & BY ELECTRICAL LOAD BOX.
5. VALVE TIMING DIAGRAM ON 4S DIESEL ENGINE MODEL & 4S PETROL ENGINE MODEL.
6. TO FIND THE CALORIFIC VALUE OF DIESEL FUEL & COAL BY BOMB CALORIMETER.
7. TO FIND THE FLASH POINT & FIRE POINT OF PETROL & DIESEL FUEL.
8. TO FIND THE CLOUD POINT & POUL POINT OF PETROL & DIESEL FUEL.
9. TO FIND CARBON PARTICLE PERCENTAGE IN DIESEL ENGINE EXHAUST SMOKE BY SMOKE METER AND TRACE THE BHP VS. % CARBON CURVE.
10. MEASUREMENT OF THE QUALITY OF STEAM – ENTHALPY & DRYNESS FRACTION.
11. TO FIND OUT THE BOILER PERFORMANCE – BOILER EFFICIENCY & STEAM EVAPORATION RATE.
12. TO VISIT A THERMAL POWER STATION & STUDY OF THE FOLLOWINGS :
 A) BOILER B) STEAM PIPE C) FURNACE
 D) ECONOMIZER E) PREHEATER F) STEAM TURBINES
 G) ALTERNATOR H) WATER TREATMENT PLANT I) E. S. P.

ACTIVE & PASSIVE NETWORK SYNTHESIS
CODE : EEE 605
CONTACTS : 3L
CREDITS : 3

PROPERTIES OF P. R. FUNCTION FOR PASSIVE SYNTHESIS.
Electronics & Electronics Engineering Syllabus

DRIVING POINT SYNTHESIS, CAMER & FOSTER METHODS.
TRANSFER FUNCTION SYNTHESIS (BOLT DUFFION METHOD)
PASSIVE FILTER DESIGN(CONSTANT K & M DERIVED).

ACTIVE SYNTHESIS
FILTER CHARACTERISTICS- BUTTERWORTH, CHEBYSHEV & BESSEL FILTERS.
REALISATION USING VCVS, NIC, INIC & IMPEDANCE CONVERTER & INVERTER NETWORK USING OP AMPS & DISCRETE COMPONENTS, TUNABLE FILTERS.
SENSITIVITY ANALYSIS FOR OPAMP BASED FILTERS USING R-C NETWORKS.

BOOKS
RC NETWORK SYNTHESIS – HUELSMAN
- S. K. MITRA
NETWORK SYNTHESIS – VAN VALKENBERG

ELECTIVE I
PROCESS CONTROL INSTRUMENTATION
CODE : EEE 606/1
CONTACTS : 3L
CREDITS : 3

INTRODUCTION TO PROCESS CONTROL, ANALOG SIGNAL CONDITIONING, DIGITAL SIGNAL CONDITIONING, THERMAL SENSORS, MECHANICAL SENSORS, OPTICAL SENSORS, SMART SENSORS,
DISCRETE – STATE PROCESS CONTROL (PROGRAMMABLE LOGIC CONTROLLER), ANALOG CONTROLLER,
DIGITAL CONTROLLER, CONTROL LOOP CHARACTERISTICS, COMPUTER CONTROL OF PROCESSES

BOOKS
PROCESS CONTROL INSTRUMENTATION TECHNOLOGY – C. D. JHONSON
HAND BOOK OF PROCESS CONTROL – CONSIDINE
PROCESS CONTROL HANDBOOK – LIPTAK

ELECTIVE I
NON CONVENTIONAL ENERGY
CODE : EEE 606/2
CONTACTS : 3L
CREDITS : 3

INTRODUCTION – CONCEPT OF ENERGY, ENERGY & SOCIETY, WORLD ENERGY SCENARIO.
NEW ENERGY TECHNOLOGY – PROSPECTS OF RENEWABLE / NON CONVENTIONAL ENERGY SOURCES.
SOLAR ENERGY – SOLAR RADIATION, COLLECTOR, ENERGY STORAGE SYSTEM & UTILISATION.
WIND ENERGY – BASIC PRINCIPLE OF WIND ENERGY CONVERSION, TYPES OF WIND GENERATORS, SELECTION, INSTALLATION & MAINTENANCE OF WIND MACHINES.
GEO THERMAL & OCEAN THERMAL ELECTRIC ENERGY – MAGNETO HYDRODYNAMICS.
NUCLEAR ENERGY – FUSSION & CONTROL OF PROCESS, DIFFERENT TYPES OF STORAGE SYSTEMS MICRO HYDEL PROJECTS.
INTEGRATED STAND ALONE SYSTEM OF DIFFERENT NON CONVENTIONAL ENERGY SYSTEMS.
INTRODUCTION TO ENERGY CONSERVATION & AUDIT.
BOOKS

NON CONVENTIONAL ENERGY SOURCES – G. D. RAI

West Bengal University of Technology
Structure & Academic Curricula for B. Tech in
Electrical &
Electronics Engineering

SEVENTH SEMESTER

Elective-II
a. HVDC Transmission
b. Power Generation Economics
c. Utilization of Electric Power
d. Illumination Technology

POWER SYSTEM-II

Code: EEE 701
Contacts: 3L + 1T
Credits: 3

Protective relays and their applications to power apparatus and systems.

Principles of circuit breakers – different types, oil circuit breakers, air circuit breakers, vacuum circuit breakers, SF6 – circuit breakers, their uses and comparison.

BOOKS:
1. Nagrath & Kothari – Power System Engg. - TMH
2. Rao S S – Switchgear & Protection ; Khanna Pub
3. Van Warrington A R – Protective Relaying Vol I; Chapman Hall
4. Van Warrington A R – Power System Protection Vol II; Chapman Hall
5. Singh, Electric Power Generation, Transmission & Distribution, PHI
8. Electrical Transmission & Distribution Reference Book; Westinghouse
12. M A Pai – Computer Techniques & Power systems
13. Jayachrista, Power System Analysis, Scitech

MULTIMEDIA SYSTEMS

Code: IT-711
Contacts: 3L
Credits: 3
Electronics & Electronics Engineering Syllabus

Allotted Hrs.: 45L

Introduction to Multimedia: Overview, Importance, Components, Uses of multimedia, Future Hypertext and hypermedia, different media and channels and modes of communication.

Multimedia Resources: Data rate, cost effectiveness and production time considerations, Analog and digital representations, Image, Video and Audio Standards, Colour space and models, communication standards - ISDN, ATM

Equipment and devices: Display screen, storage devices, communication and interactive peripherals.

Text: Attributes and guidelines, Text markup, HTML, models of hypertext document, XML

Digital Graphics: Vector and raster graphics, Graphics file formats, image manipulation.

Audio: Digital audio, MIDI, Processing sound, sampling, compression.

Video: MPEG Compression standards, Compression through Spatial and Temporal Redundancy, inter-frame and intra-frame Compression.

Animation: Types, techniques, key frame animation, utility, Morphing

Compression techniques: Lossless and lossy compression, Simple compression techniques Interpolative, Predictive, Transform Coding, Discrete Cosine Transform, Statistical Coding - Huffman encoding. JPEG, MPEG

Design and development of multimedia: Tools to support multimedia development, Authoring Multimedia - different type of authoring environments, Media synchronization, Design process, development team Evaluation and Testing - Gagne events, Project management

Multimedia information management application: Multimedia database and design consideration.

Intellectual property: Foundations of intellectual property, copyrights, issues regarding the use of intellectual property.

Future developments: Virtual reality, newer devices, performance support, knowledge management, interactive interfaces

Text Books:

2. Halsall,Multimedia Communication, Pearson Education
5. Andleigh & Thakrar, Multimedia Systems, PHI

References:

2. Jeff Burger - "Multimedia for decision makers: a business primer", Pearson Education,
6. Vannevar Bush (Foundation Paper) - "As we may think"

ELECTRICAL MACHINE DESIGN

Code: EEE 702

Contacts : 3L + 1T

Credits : 3

Basic design principles and approaches, specification, Magnetic and electric loading, put equations and output coefficients, Main dimensions. Ratings, Heating cooling and temperature rise.

Transformer : Magnetic circuit, core construction and design, winding types, insulation, Loss allocation and estimation, Reactance, Temperature rise.

D C Machine: No. of poles and main dimensions, armature, windings, Magnetic circuit and Magnetisation curve, Commutator and brushes.

Induction Machine-3 phase: Rating specifications, standard frame sizes, Main dimensions specific loadings, Design of stator windings, Rotor design – slots and windings, calculations of equivalent circuit parameters.

Computer assisted design of above machines.

BOOKS:

2. Clayton A E & Hancock ‘N N : The Performance and Design of Direct Current Machines; CBS Publishers and Distributors
4. Norton, Machine design, Pearson Education
Electronics & Electronics Engineering Syllabus

DIGITAL SIGNAL PROCESSING:
Code: EEE-703
Contacts: 3L + 1T
Credits: 3

Introduction: Discrete and continuous time signals and systems. Data acquisition and conversion including multi-channel data converter and monitors. Stability, linearity and causality of linear shift in variant signal transmission and processing. Review of Z-transformation.

DFS: Its properties, Fourier representation of finite duration sequences.

DFT: Representation of periodic sequence computational algorithms.

Computer control of processes – supervisory and direct digital control. Simple filter design using MATLAB.

Introduction to DSP hardwares: Architectural features, Fixed point processors, floating point processors. Control and Instrumentation application – Telemetry and metering.

BOOKS:
1. Mitra S: Digital Signal Processing - A computer based approach ; TMH
3. Chen, Digital Signal Processing ; OUP
4. Johnson, Digital Signal Processing, PHI
5. Babu Ramesh, Digital Signal Processing,Scitech
6. Ingle, Digital Signal Processing Using MATLAB,Vikas
7. Ifeachor, Digital Signal Processing, Pearson Education
11. Rabiner L R & Gold B : Theory & Applications of Digital Signal Processing, PHI

ELECTIVE-II

HVDC TRANSMISSION
Code: EE-704(a)
Contacts: 3L
Credits: 3

AC/DC Conversion - Hg. Arc, SCR, Bridge rectifier and inverter circuits. Recent trends of HVDC valves. Principles of grid control, firing angle control, harmonic analysis, commutation failure, starting and stopping of DC Link.

Reactive Power requirement, types of forced commutation. Corona and Radio interference, protective devices.

Smoothing reactors - Functions, double commutation failure, consequent commutation failure - their prevention.

Simulation of HVDC systems, Parallel operation of HVDC and AC systems, multiterminal DC systems.

Stability of AC/DC interconnected systems.

Books:

POWER GENERATION ECONOMICS
Code: EE-704(b)
Contacts: 3L
Credits: 3
Electronics & Electronics Engineering Syllabus

Cost of Power Generation - Thermal, Hydro and Nuclear - Types of Consumers in a distribution system - Domestic, Commercial, Industrial etc. Concepts of load factor, power factor, diversity factor, demand factor.

Electricity Tariff - Block rate, flat rate, two part, three part tariffs. Subsidization and cross subsidization. Availability tariff of generation companies. Pool tariff of transmission companies.

Books:

UTILIZATION OF ELECTRIC POWER
Code: EE-704 (c)
Credits: 3
Contacts: 3L

Traction: System of track electrification, train movement and energy consumption (speed time curves, crest speed, average speed and schedule speed) retive effort, factors affecting energy consumption (dead weight, acceleration weight and adhesion weight) starting and braking of traction motors, protective devices.

Illumination: Laws of illumination, polar, curves, photometry, integrating spheres, types of lamps, lamp fittings, Light control, design aspects of indoor and outdoor lighting.

Welding: Its classification, resistance, arc and ultrasonic welding, characteristics of welding transformers - modern welding techniques and control.

Heating: Resistance heating, induction and dielectric heating.

Electrolytic Processes: Electroplating, Anodizing, Electro-cleaning, Electro extraction etc.

Books:
1. Wadha C L - Utilization of Electric Power; New Age International
2. Wadha C L - Generation, Distribution and utilization of electrical energy; New Age International Ltd.
3. Singh, Electric Power Generation, Transmission & Distribution, PHI
5. A T Dover - Electric Traction

ILLUMINATION TECHNOLOGY
Code: EE-704 (d)
Credits: 3
Contacts: 3L

Measurement of light - radiometric and photometric quantities, units of measurement, standardization. Measurement of light distribution, direct and diffused reflection, fundamental concepts of colourimetry and measurement of colour.

Types of lamps: GLS, Tungsten - halogen, Discharge, low pressure sodium vapour fluorescent, metal - halide, IR and VV lamps - their construction, filament material, theory of operation, life, characteristics and application.

Design, objectives and specifications of lighting and systems; design of luminance, electrical circuits and auxiliaries, basic lighting design, consideration and lighting parameters for extension lighting, interior lighting and day lighting.

Energy conservation in lighting.

Books:
2. Wadha C L: Generation, Distribution and Utilization of electrical energy - New Age International Ltd.
3. Singh, Electric Power Generation, Transmission & Distribution, PHI
Electronics & Electronics Engineering Syllabus

POWER SYSTEM LAB
Code: EEE 791
Contacts: 2P
Credits: 2

1. Study on (i) on load Time Delay Relay (ii) off load Time Delay Relay
2. Polarity, Ratio and Magnatisation Characteristics Test of CT & PT
3. Testing on (i) Under Voltage Relay and (ii) Earth Fault Relay
4. Study on D C Load Flow
7. Study on Economic Load Dispatch
8. Study of Transformer Protection by Simulation
9. Study of Generator Protection by Simulation
10. Study of Motor Protection by Micon Relay
11. Study of Different Characteristics of Over Current Relay

ELECTRICAL MACHINE DESIGN LAB
Code: EEE 792
Contacts: 2P
Credits: 2

Design of Transformer core, windings and calculations of performances.

Estimation of main dimensions of d.c. machines after selecting poles, Design of poles and armature windings.

Calculations of main dimensions of Induction motors and design of stator windings and selection of slots. Design of (i) squirrel cage and slip-ring rotors.

MULTIMEDIA SYSTEM LAB
Code: IT-781
Contacts: 3P
Credits: 2

1. Web document creation using Dreamweaver (6P)
2. Image manipulation and editing with Photoshop (6P)
3. Audio recording and editing (3P)
4. Creating animation using Flash (9P)
5. Individual Project: Development of personal web page and documentation (6P)
6. Main Project: Group project, complete design documents, implementation of an application (15P).

ASSIGNED PROJECT
Code: EEE-781
Credit: 2

Evaluation of the Practical Training undergone for 6 weeks during summer vacation after 6th semester.

SEMINAR ON ASSIGNED / SELECTED TOPICS
Code: EEE-782
Contacts: 3P
Credit: 2

Seminar based on contemporary assigned / selected topics.

West Bengal University of Technology
Structure & Academic Curricula for B. Tech in Electrical & Electronics Engineering
EIGHTH SEMESTER

29
VALUES & ETHICS IN PROFESSION

HU-801
Contracts: 3L
Credits - 3

Science, Technology and Engineering as knowledge and as Social and Professional Activities

Effects of Technological Growth:

Rapid Technological growth and depletion of resources, Reports of the Club of Rome. Limits of growth: sustainable development
Energy Crisis: Renewable Energy Resources
Environmental degradation and pollution. Eco-friendly Technologies. Environmental Regulations, Environmental Ethics
Appropriate Technology Movement of Schumacher; later developments
Technology and developing notions. Problems of Technology transfer, Technology assessment impact analysis.

Ethics of Profession:

Engineering profession: Ethical issues in Engineering practice, Conflicts between business demands and professional ideals. Social and ethical responsibilities of Technologists. Codes of professional ethics. Whistle blowing and beyond, Case studies.

Profession and Human Values:

Values Crisis in contemporary society
Nature of values: Value Spectrum of a good life
Psychological values: Integrated personality; mental health
Societal values: The modern search for a good society, justice, democracy, secularism, rule of law, values in Indian Constitution.
Aesthetic values: Perception and enjoyment of beauty, simplicity, clarity
Moral and ethical values: Nature of moral judgements; canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility.

Books:

INDUSTRIAL MANAGEMENT

Code: HU-802
Contacts: 3L
Credit: 3

Basic concepts of management, objectives, classification and hierarchy, different schools of management thought, principal functions of management, Management as an organizing and directing force, Structure of the management decision making process, Organization structure, authority and responsibility, Organisation dynamics, Managerial leadership, communication systems, Managing human factors in business and industry, Industrial relation, Union activities, trade union acts, collective bargaining, disciplinary procedure.

Organizational objectives and long range forecasting, planning, organizing, programming and controlling process, managerial control strategies; quantity and quality control, cost benefit analysis, present work and breakeven analysis, budgetary control, use of management science for the efficient administration of economic units, production, financial and marketing management.

Adoption of statistical and computer methods and techniques to managerial research and managerial decision making and general management.

Books:

2. Industrial Management, Vol. I L.C. Jhamb, EPH,
3. Industrial Engineering & Production Management - Martand Telsang, S. Chand
4. Industrial & Business Management - Martand T. Telsang, S. Chand
6. Production & Operations Management – Adam, Pearson Education /PHI
7. Industrial Relations, Trade Unions & Labour Legislation - Sinha, Pearson Education Asia

FINANCIAL MANAGEMENT AND ACCOUNTS

Code: EEE 801
Contacts: 3L
Credits: 3

Production & cost analysis - use of production and demand functions. Determination of price - pricing under different objectives. Roles, objectives and goals of financial management.

Industrial financing - capital formation and growth. Foreign Industries - export, import and balance of trade.

Books:

1. Riggs J L - Engineering Economics
2. I.M Pande, Financial Management, Vikas
3. Financial Mgmt, Khan & Jain, TMH
5. Ramachandran, Accounting & Financial Mgmt, Scitech
6. Dean J - Managerial Economics, PHI
7. Maheswari, Managerial Economics, PHI
8. Samuelson - Economics

ELECTIVE-III

Microprocessor Based System

Code : EEE 802(a)
Contacts : 3L
Credits : 3

INTRODUCTION
Block Diagram of a typical microprocessor based system pointing out the role of microprocessor and other peripheral blocks.

MICROPROCESSOR

ADDING MEMORY
Classification, Memory Timing, Interfacing requirements, Interfacing Slow Memory, Interfacing Static RAM (6116 – 2K, 6264 – 8K), Interfacing EPROM (2764 – 8K, 27256 – 32K), Address decoding (using logic gates and decoders, using PAL), Designing Memory Modules (higher capacity say 512K) using memory chips (say 8K), Interfacing Memory Modules to the microprocessor, Interfacing Dynamic RAM, Non Volatile Memories

ADDING INPUT/OUTPUT DEVICES
Designing an 8-bit input port, Designing an 8-bit output port, I/O space, Address decoding for Memory mapped I/O and I/O mapped I/O
Review: I/O Controllers – 8255A, 8250/1, 8279, 8253/4, 8259A, 8237A
Examples: Interfacing and assembly language monitor program for Key Board (one dimensional, two dimensional) through 8255A and 8279, Centronics-type Parallel Printer through 8255A, Display (7-segment, dot-matrix, alphanumeric) through 8255A and 8279, Data Transfer between two microprocessor based systems through 8255As, Mechanical and solid state Relays, Stepper Motor etc.
Electronics & Electronics Engineering Syllabus

Analog Interfacing and Industrial Control: Review of Operational amplifier characteristics and circuits, Sensors and transducers (light sensors, temperature sensors, Force and pressure transducers, etc.), signal conditioning – multiplexing, linearization and scaling, 4-20 mA current loop.
Examples: Interfacing and assembly language monitor program for D/A Converter (MC1408 8-bit D/A, DAC 1208 12-bit D/A etc.), A/D Converter (ADC0808 8-bit ADC, ICL7109 12-bit ADC etc.)

ADDING TOGETHER
Designing microprocessor based systems with monitor programs for single/ multipoint Temperature Monitoring, Data Logger, PID Controller, etc.

EMBDEDED CONTROLLER
Intel 8051 embedded controller – Architecture and Assembly language programming, system design using 8051

COMMUNICATING WITH OTHERS
Asynchronous serial data communication, Serial Data transmission methods and standards, RS-232C Serial Data Standard (Rs-232C to TTL interfacing, RS-232C signal definitions, Connection), Modems

References:
1. Douglas V. Hall – Microprocessors & Interfacing, Tata McGraw-Hill
2. Mohamed Rafiquzzaman – Microprocessors and Microcomputer based system Design, PHI
4. Ray & Bhurcharandi, Advanced Microprocessors & Peripherals, TMH
5. Predko, Programming & Customising 8051 Microcontroller, TMH
6. John Uffenbeck – Microcomputers and Microprocessors, PHI/ Pearson Education
7. Chowdhury & Chowdhury, Microprocessor & Peripherals, Scitech
8. Thyagarajan, Microprocessor & Microcontrollers, Scitech
9. Michel Slater – Microprocessor Based Design, PHI
10. Walter A. Tribel – The 8088 and 8086 Microprocessors, PHI
12. Mathivanan, Microprocessors PC Hardware & Interfacing, PHI

OPTIMISATION TECHNIQUES

Code: EE-802(b)
Contacts: 3L
Credits: 3

Application to Control and management problems, Miscellaneous topics, sequencing, scheduling and inventory control.

Books:
1. Hadley G: Linear Programming; Pearson Education
2. Vaserstein, Introduction to Linear Programming, Pearson Education
3. Rao B, Optimization Techniques, Scitech
4. Panneerselvam, Operation research, PHI
5. Kalavathy, Operation research, Vikas
8. Rao S S: Engineering Optimization (3rd Ed); New Age Int. (P) Ltd.

ADVANCED NUMERICAL COMPUTATION

Code: EE-802(c)
Contacts: 3L
Credits: 3

Selected advanced topics in analysis of numerical methods for serial and parallel computers from the following areas: Matrix computation and eigen value problems, System of non-linear equations, Ordinary and partial differential equations.
Electronics & Electronics Engineering Syllabus

Books:
1. Isories and M J D Powel (Eds.) - The state of the art in Numerical Analysis - Oxford University Press, 1987
2. Rajaraman, Computer Aided Numerical Methods, PHI
3. Arumugam, Numerical Methods, Scitech
4. Gerald, Applied Numerical Analysis, Pearson Education
5. Shankara Rao, Numerical Methods, PHI
6. N Dutta, Computer Oriented Numerical Methods, Vikas
7. D M Young and R T Gregory - A survey of numerical mathematics - Vol-II - Pearson Education
8. D A H Jacobs (Ed.) - The state of the art in numerical mathematics
10. M J Quinn - Design of efficient - algorithms for parallel computer
11. D J Evans (Ed) - Parallel processing systems, Cambridge University Press, 1982

ENERGY AUDIT & CONSERVATION
Code: EE-802(d)
Contacts: 3L
Credits: 3

Energy resources, renewable and non renewable resources, necessity of conserving energy resources. Alternative sources, energy recycling- Cogeneration. Comparison of various resources in view of capital and running cost, significance of alternative resources, limitations of these resources.

Simple payback period analysis, advantages and limitations of payback period. Time value of money, net present value method. Internal rate of return method, profitability index for cost benefit ratio. Study and selection of proper tariff. Fixed and variable components in tariff.

Concept of energy management- energy inputs in industrial Residential, commercial , agriculture and public sectors- comparison of different energy inputs on the basis of availability, storage feasibility, cost (per unit output) etc. Electrical Energy Management- energy Accounting, Measurement and management of power factor, voltage profile, current energy requirement, power demand monitoring, target setting etc.

Concept of Supply Side Management and Demand Side Management (DSM), Load Management , Voltage profile management from receiving end. Methods of implementing DSM. Advantages of DSM to consumers, utility and society.

Energy audit , a pre-requisite of energy conversion, Principals of energy audit, preliminary energy audit and detailed energy audit. Procedures for carrying out energy audit. Energy- production relationship, specific energy consumption, least square method, Cusum-technique, data energy flow diagram. Sankey diagram. Instruments used for energy audit.

Objectives of energy conservation, planning for energy conservation. Potential for saving electrical energy- in motors, lighting, heating process, cooling system.

Energy conservation in industrial, agricultural, commercial, domestic municipal sectors.

Energy conservation in generation, transmission and distribution. Effective measures to reduce the T&D losses.

Books:-
Electric energy utilization and conservation- S.C.Tripathy
Energy technology - S.Rao
Electronics & Electronics Engineering Syllabus

OPTIMAL CONTROL SYSTEMS

Code: 802(e)
Contacts: 3L
Credits: 3

Formulation of optimal control problem: Minimum time, minimum energy, minimum fuel problem, state regulator, output regulator & tracking problems.

Calculus of variations: Constrained fixed point and variable point problems, Euler Lagrange equations.

Problems with equality and inequality constraints. Engineering application, Lagrange, Mayer & Bolza problems, pontryagins Maximum (minimum) principle.

Multiple decision process in discrete and continuous time - The dynamic programming.

Numerical solution of two point boundary value problems - the steepest descent method and the Fletcher - Powell Method.

Books:

2. Tau J.: Modern Control Theory; McGraw Hill
4. Anderson & Moore, Optimal Control, PHI
5. Glad, Control Theory, Vikas
7. Boltyanskii V G; Gamkrelidge R V; Pontryagin L S; On the theory of Optimal process
Electronics & Electronics Engineering Syllabus

COMMUNICATION ENGG

Code: EC-802(f)
Contacts: 3L
Credits: 3

Linear modulations - AM, DSB, SSB and VSB. Envelope and synchronous detection. Carrier recovery-different loops e.g. PLL etc.
Circuits to generate linear modulated signals. Low and high power modulators. Exponential modulation. Frequency and phase
modulations. Generation of FM & PM. Radio receivers-superheterodyne principle. AGC, Elements of antenna technology, wave guide
and microwave technology.

Noise sources and their characteristics, noise temperature, noise figure and bandwidth. SNR, performance of AM, PM, FM and pulse
modulation over different transmission channels.

Channel Capacity, Shannon's Theorem, Nyquist Criterion and Sampling. Pulse modulation types, detection of PAM, PWM & PPM,
Pulse generation. Quantisation of analog signals - generation noise. A/D & D/A conversions. PCM, DM, ADM, DPCM, ADPCM for
speech signals. Time division and Frequency division multiplexing. Digital modulations: SK, FSK, PSK, DPSK, QPSK & MQAM.
Modems. Elements of information theory. Error control and coding Data transmission-synchronization, data protection, error
detection and corrections - protocol. Elements of optical communication - optical fibre and sources. Photo-detectors, optical
connectors and couplers. Analog and digital transmission using opto - devices.

Elements of satellite communications - tracking and control, launching. Propagation characteristics. Satellite transponders and
antennas. Modern trends in communications systems.

Books:

2. G. Kennedy - Electronic communication Systems - TMH
4. Hancock - An introduction to the Principles of Communication Theory - TMH
5. Taub and Schilling - Principles of Communication systems – TMH
6. Roddy, Electronic Communication, Pearson Education/PHI
7. S. Haykin - Communication systems - Pearson Education/PHI
8. Dungan, Electronic Communication Systems, Vikas

REMOTE CONTROL & TELEMETRY

Code: EI - 802(g)
Contacts: 3L
Credits: 3

Introduction : classification of telemetry systems - voltage, current, position, frequency and time. Components of telemetering and
remote control systems. Quantization theory - sampling theorem, sample and hold, data conversion-coding.

Multiplexing-time division multiplexers and demultiplexers-theory and circuits, scanning procedure; frequency division multiplexing
with constant bandwidth and proportional bandwidth, demultiplexing.

Data acquisition and distribution system. Fundamentals of audio-telemetry system - R.F. links. Telemetry design system. Standard for
telemetry e.g. JRIG etc. Microwave links. Pulse code modulation (PCM) techniques. Practical telemetry system - pipe line telemetry,
power system telemetry, supervisory telecontrol systems. Introduction to ISDN.

Books:

3. Gruenberg E L - Handbook of Telemetry and telecontrol - MGH, 67

COMPUTER COMMUNICATION

35
Electronics & Electronics Engineering Syllabus

Code: EC-802(h)
Contacts: 3L
Credits: 3

Data transmission principles, transmission components; ASK PSK, FSK, QPSK, O-QPSK, QAM, M-cry digital modulation; data compression; modems principles and their standards; Error control procedures; computer communication, point to point, multidrop, circuit, message and packet switching; components of computer network, hosts, communications channel, terminals, protocols, multiplexers, codes, concentrators etc; fascimile transmission, electronic mail, voice mail, internet working; case study of computer communication networks. Different LAN standards, Wireless LAN. Introduction to Broadband, ATM and ISDN network.

Books:
2. F Halsall - Data Communication Computer Networks and OSS - Pearson Education
3. Zheng & Akhtar, Network for Computer Scientists & Engineers, OUP
5. Miller, Data Network Communication, Vikas
6. A Tanenbaum - Telecommunication Network - Pearson Education/PHI
7. W Stallings - Data and Computer Communication - Pearson Education/PHI
8. W Stallings - ISDN and introduction - Pearson Education/PHI

AI & NEURAL NETWORKS

Code: CS-802(i)
Contacts: 3L
Credits: 3

Machine Learning & AI - Introduction, hierarchical perspective and foundations. Rote Learning, Learning by advice, Learning in problem solving inductive learning, explanation based learning, learning from observation and discovery, learning by analogy, introduction to formal learning theory.

Biological neurons and brain, models of biological neurons, artificial neurons and neural networks, Early adaptive nets Hopfield nets, back error propagation competitive learning lateral inhibition and feature maps, Stability - Plasticity and noise saturation dilemma, ART nets, cognition and recognition.

Neural nets as massively parallel, connectionist architecture, Application in solving problems from various are as e.g., AI, Computer Hardware, networks, pattern recognition sensing and control etc.

Books:
1. P H Winston - Artificial Intelligence - Pearson Education
2. Bishop, Neural Networks for Pattern Recognition, OUP
3. Cohen, Empirical Methods for AI, PHI
4. Haykin, Neural Network, Pearson Education/PHI
5. E Charniak and W Midermott - Introduction to Artificial Intelligence - Pearson Education.
7. Shivanandan, Artificial Neural Network, Vikas
8. Bose - Neural Network Fundamentals with graphs, Algorithms and Applications - TMH.

PROJECT MANAGEMENT & OPERATIONS RESEARCH

Code: M-802(j)
Contacts: 3L
Credits: 3

Project formalities - feasibility study and economic evaluation; UNI DO, OECD and RBI guidelines. Network based project management-graph-theoretic applications. CPM, PERT, GERT and DCPM activities. Scheduling with limited resources, cash scheduling to multi projects situation. Project monitoring and control. Project management under risk and uncertainty.

Operations research-decision-making, development of OR. Linear programming; Formulating of LP models, graphical solution, simplex method, duality theory and application. Transportation problem, Assignment problem. Waiting line models, elements of queuing models. Poisson arrival and exponential service time distribution, M/M/1 Queue. Finite population models. Queuing art models. Applications. Simulation; modeling, use of random members, flow-chart development, Inventory Control-introduction, costs, deterministic and stochastic models, buffer stocks.
Books:

3. Panneerselvam, Production & Operations Management, PHI
4. Taha - Operation Research, Pearson Education/PHI
5. Kalavathy, Operation Research, Vikas
6. Patel, Project Management, Vikas
7. Juran - Quality Planning & Analysis 3rd Edn. - MGH
10. Adam & Ebert - Production & Operations Management: Concepts, Models and Behaviour 5th Edn. – PHI/ Pearson Education.
Electronics & Electronics Engineering Syllabus

ASSIGNED PROJECT

Code: EE-894
Contacts: 12P
Credits: 8

Project work assigned to the students by the teachers or selected by students and approved by teachers on current engineering problems of industrial use.